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Abstract. The connection between level repulsions and the singularities associated with 
the analytically continued energy levels is investigated. We also conjecture that there 
are necessarily specific consequences for the state vectors when the statistical analysis of 
the energy spectrum indicates quantum chaos. A procedure which allows a qualitative 
assessment of the positions of the exceptional points is suggested. The importance of their 
distribution for quantum chaos is discussed within this context. 

1. Introduction 

Avoided level crossings have always played an important role in quantum mechanics 
such as nuclear physics [l]  but also in quantum electrodynamics [2], as well as 
in quantum chromodynamics [3]. More recently, the subject of quantum chaos has 
attracted particular interest; it is directly linked to avoided level crossings. This paper is 
motivated by the consideration that if specific Hamiltonians in quantum mechanics are 
distinct from others by manifesting patterns that are denoted as quantum chaos, such 
properties must reside with the operator properties of the Hamiltonian. If successful, 
such an approach should eventually even give rise to a satisfactory definition of 
quantum chaos. 

Since quantum chaos is, in contrast to its classical counterpart, at best vaguely 
defined [4], a short discussion seems to be appropriate. There are the two traditional 
approaches : the statistical approach using Gaussian orthogonal ensembles of Hamil- 
tonians (GOE) to obtain statements about the statistical properties of the spectrum [5]. 
There is no physical input a priori and the major motivation lies in the successful 
description of nuclear spectra at high level density. On the other side is the semiclas- 
sical approach which relies on quantisation of classically chaotic systems [6]. Clearly, 
such systems must be sufficiently small to allow analytic and/or numerical treatment 
of the analogous classical case. With regard to the spectral properties a connection 
has been established between the two approaches [7]. A great deal of insight and 
applications have been obtained [8] from these efforts, but a number of questions are 
still outstanding. 

4 On leave of absence from the Department of Physics, University of the Witwatersrand, Johannesburg, 
South Africa. 
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One of these questions concerns the specific property of the quantum mechanical 
operator that gives rise to quantum chaos. This, however, throws us back to the 
question: what is quantum chaos? A tentative answer may be provided by a math- 
ematical model [9] for a scattering situation. For a physical bound-state problem an 
answer cannot in all cases rely on the classical analogy, for a number of reasons. 
For instance, due to its complexity, a many body system is not amenable to detailed 
analysis by Newtonian mechanics. Also, typical quantum effects like the existence of a 
good mean field and collective motion are manifestations of order in a quantum system 
whose classical counterpart is chaotic. On the other hand, the statistical properties of 
only the spectrum do not seem to provide a satisfactory criterion either. We believe 
that a connection should be sought between the spectral properties and a specific 
behaviour of the corresponding state vectors. Since an abstract orthogonal basis does 
not distinguish between a regular and a chaotic Hamiltonian, one has to refer to a 
particular representation. In the semiclassical approach, reference is naturally made 
to position representation, i.e. the Schrodinger wavefunction. In a general quantum 
system, like a many body system, there seems to be no choice but to rely on matrix 
elements of physical operators such as the momentum operator. In this way one can 
hope in principle to reduce the criteria for quantum chaos to the properties of the 
quantum mechanical Hamiltonian. We do not offer criteria in this paper, but rather 
address ourselves to the mathematical properties of Hamiltonians in terms of which 
such criteria could be formulated. Intuitively, we would expect ‘erratic’ behaviour of 
matrix elements (mlpln) as a function of n and m when the state vectors refer to a 
chaotic Hamiltonian; we would expect, at least locally, high sensitivity of levels and 
matrix elements under perturbation. 

Level repulsion is inextricably part of a quantum chaotic spectrum. In order to 
study level repulsion we need at least one parameter to visualise the repelling levels. A 
Hamiltonian of the form H ,  + ;.HI is the starting point of many investigations in all 
branches of physics. It gives rise to the spectrum E,(%). We may specifically assume 
that the two Hamiltonians H, and H ,  are regular when considered individually. In 
this case we can interpret the problem as a transition from order to order prevailing 
for 3- = 0 and i -+ 00, respectively. If the two operators are incompatible, the mixed 
problem is characterised by many level repulsions. We may virtually exclude any level 
crossing by assuming that the full Hamiltonian is irreducible with respect to internal 
symmetries. 

Each level repulsion is associated with branch-point singularities of the levels when 
they are continued into the complex i plane. The singularities are called exceptional 
points [lo], they are specific to a particular Hamiltonian. Whether or not the spectrum 
satisfies the criteria in accordance with GOE must depend on the distribution of the 
exceptional points. In this paper an attempt is made to predict the distribution of 
the exceptional points only from the knowledge of H, and HI as long as they are 
represented by finite-dimensional matrices. This is a preliminary attempt in that the 
underlying idea is presented and no statistical treatment is pursued. Also, the more 
interesting question about the corresponding behaviour of the state vectors is dealt 
with only in a cursory manner. 

In section 2 we explain the concept of exceptional points in an elementary way 
using two-dimensional matrices. The non-trivial extension to higher dimensions is 
discussed in section 3. In section 4 the actual procedure for obtaining knowledge about 
the distribution of the exceptional points is presented. A discussion concludes the 
paper. 
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2. Analytic treatment for a two-dimensional matrix 

We use a 2 x 2 matrix to illustrate in an elementary way the concept and the parametric 
dependence of the exceptional points. The problem investigated is of the form Ho+i.HI. 

We assume Ho to be diagonal with eigenvalues and c2 with < c2. The 
eigenvalues of HI are denoted by 0, and w2, w1 < w2.  If the two operators commute, 
i.e. if HI is also diagonal, the eigenvalues of the combined problem are 

E:( i )  = E& + Rw, k = 1,2. 

The two lines E:(A) intersect at E. = E., = -(cl - E ~ ) / ( W ~  - w2) ,  where the two levels 
are degenerate. This degeneracy is lifted if the two levels in HI are coupled. This can 
be accomplished by a rotation of HI. In this way we preserve the spectrum of HI. 
Denoting the diagonal representation of HI by D, we use HI = U D U - ' ,  which rotates 
D to the representation in which H,, is diagonal. The rotation matrix is of the form 

coscp -sincp 
U = (  sincp coscp 

The eigenvalues of the problem H, + AHl are 

where 

Clearly, for cp # 0 there is level repulsion of the two levels. If cp is small the level 
repulsion occurs in the vicinity of %,. The level repulsion is associated with the 
exceptional points which are the branch point singularities of E,(%) when the two 
functions E ,  are continued in the variable i. The exceptional points occur at the zeros 
of the square root in (l) ,  which are positioned at the two complex conjugate values 

Ac = -- E l  - E 2  exp(f2icp). 
WI -U2 

Obviously, the two functions E k ( i )  are the values of one single analytic function on 
two Riemann sheets. The two sheets are connected at the square root branch point 
singularities occurring at E. = E.c. At those points the values of the two functions are 
equal, i.e. El(%c) = E2(%c).  Only for the particular values of the angles cp = 0 or cp = n/2 
do the two Riemann sheets become disconnected as the two branch points coalesce 
on the real axis; then the two levels become the functions Ey(A) and E:(A), which are 
both without branch point and have no analytic connection; this situation corresponds 
to the actual degeneracy occurring at io. When cp is varied between 0 and n/2 the 
branch points move on a circle according to (2). For illustration, we plot in figure 1 
the two levels as a function of A for a few values of cp. The effect of the position of the 
exceptional points on the position and the type of the level repulsion is clearly seen: 
the closer the exceptional point to the real axis, the narrower the mutual approach of 
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Figure 1. Top: the two levels as a function of 1. for cp = 0.05 (chain curve), 0.45 (dotted 
curve), 0.85 (broken curve) and 1.52 (full curve). Bottom: q ( A )  for the same parameter 
values. 

the two repelling levels. This corresponds to the magnitude of the coupling term in H ,  
which is given by i ( w l  - w2)  sin 240. If the coupling is weak the two levels nearly cross, 
while they are strongly repelled when the coupling is strong. 

Of interest is the behaviour of the eigenvectors which are the column vectors of the 
orthogonal matrix U(A)  that diagonalises Ho + AHl.  Clearly, V(0) is the unit matrix 
while V(co) is identical to U introduced above. We parametrise U ( % )  by the angle c p ( % ) ,  
which is determined by 

1 4 w 2  - w l )  sin 240 tancp(A) = - 
2 E’(>.) - E ,  - %(col cos2 cp  + w2 sin’ 40)  ’ 

This confirms that cp(0) = 0 and p(c0) = c p .  Furthermore, q(-m) = q(c0) + n/2. The 
decrease of q ( A )  by n / 2  occurs essentially where level repulsion occurs. This drop is 
the more dramatic the closer the exceptional points lie to the real axis. For illustration 
a few examples are given in figure 1. The decrease of cp(1.) by n / 2  means that the two 
eigenvectors interchange their position (apart from the sign of one vector), an effect 
well known in connection with level repulsion. Instead of referring to the eigenvectors, 
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we suggest, for the purpose of the discussion in the following sections, to view U (A) as 
a continuous (two-dimensional) rotation by the angle ~(1). This rotation has a strong 
E. dependence in the vicinity of the exceptional points; otherwise it is a slowly varying 
function of i. 

3. Higher dimensions 

Basically, the procedure described in the previous section can be carried over to higher 
dimensions. We assume Ho to be diagonal in an N-dimensional space with ordered 
eigenvalues E !  < e2 < ...  < E ~ .  To facilitate the discussion, the eigenvalues of H,, 
denoted by wk, k = 1, ..., N ,  are assumed to be all different from each other. If H, 
were diagonal, the spectrum of H,, + E.H, would be E:(%) = &k + Auk. These N lines 
would generically have N(N - 1)/2 different intersection points. Below we refer to 
these lines as the unperturbed lines. To switch on coupling terms in H, we use, as 
in the previous section, the form H, = U D U - ' ,  where for N-dimensional rotations 
N(N - 1)/2 angles are required to determine U .  They can be defined in many ways. A 
suitable definition is discussed in the next section. 

The switching on of the rotational angles gives rise in general to N(N-1)/2 complex 
conjugate pairs of exceptional points which are associated with the N(N - 1)/2 avoided 
level crossings that emerge from the actual crossings when all angles are zero. In other 
words, the N eigenvalues E,@) are generically values of one analytic function (which 
is usually not available explicitly) on N Riemann sheets. The N(N - 1) exceptional 
points connect the N Riemann sheets. Their position is determined by the algebraic 
problem of solving the simultaneous equations 

d 
-det[(E - e,)B,,, - AH:,;] = 0. dE (3) det[(E - ~,)8,,, - AH:,;] = 0 

Note that the determinant is an Nth-order polynomial in both E and E.. The first 
equation is the usual secular equation, while the second equation enforces equality of 
two roots of the first equation for the same A value. This is in general possible only for 
complex values of A (and therefore complex E (A)). These exceptional points should not 
be confused with diabolic points [ l l ] ,  where a degeneracy of a self-adjoint operator 
is considered when at least two real parameters are suitably chosen. The exceptional 
points are associated with a more rigid mathematical structure of the analytic functions 
Ek(A); the operator Ho + i H ,  is no longer self-adjoint for complex 1. 

It is instructive to visualise the spectrum for very small values of the angles. A 
general rotation is a product of N(N - 1)/2 primitive rotations, where we denote as a 
primitive rotation a matrix of the form 

1 

RSJ = 

1 

. (4) 
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The cos and sin functions occur in the sth and tth row and column. The rotation 
affects only the sth and tth axes. Consider the special case where U Rs,,. From the 
discussion in the previous section it is obvious that this will cause a level repulsion only 
between the crossing of the two lines E: = E ,  + h, and E: = E ,  + iq. This observation 
suggests choosing as primitive rotations precisely the ones which have a one-to-one 
correspondence to all the crossings of the unperturbed lines. A possible choice is to 
represent the general rotation by the factors Rk,, with k running from 1 to N - 1 and I 
running from k+ 1 to N .  As long as the N(N - 1)/2 angles are infinitesimally small, the 
order of the product of the primitive rotations is of no importance, as this is a second- 
order effect. In this way, each of the angles q,,, controls the level repulsion of exactly 
one crossing of the unperturbed lines labelled by s and t .  Of course, higher-order effects 
will give rise to mutual influences. 

There is an additional pattern of mutual influence of the positions of exceptional 
points in dimensions higher than two. Even if only one angle is substantially increased 
while keeping the others very small, the global pattern of the exceptional points can 
change dramatically. We illustrate this for the case N = 3. The spectra displayed in 
figure 2 are obtained by switching the angle q 1 , 3  from approximately 0 to approximately 
n/2 while keeping ~ p , , ~  and q 2 , 3  small. It is clear from figure 2 that the variation of 
qls must affect the anticrossings of the 1-2 lines and the 2-3 lines as well. Trajectories 
of the exceptional points are obtained from a variation of q1,3. In figure 3 the three 
trajectories in the upper i. plane are drawn. The small circles indicate equidistant 
increase of v , , ~ .  The broken and dotted curves refer to the anticrossings of the 2-3 
lines and 1-2 lines, respectively. It is clearly discernible how their real parts move 
towards each other from their starting points at positive real 2 values before they 
move further out into the complex plane. This reflects the shrinking distance of the 
2-3 and 1-2 anticrossing (compare figures 2(a) and 2(b)). It is an obvious geometric 
consequence caused by the primary level repulsion of the 1-3 lines which is induced by 
the increase of ql,3. The approach of all three exceptional points towards the negative 
real 3, axis, when 'pl,3 approaches n/2, is reflected in figures 2(c) and 2(d), in that small 
level spacings re-emerge. We recall that a symmetric pattern of the trajectories exists 
in the lower half plane; the dotted curve coalesces at the point Rei. x 2.5 with its 
complex conjugate partner; this signals an incidental degeneracy, i.e. for this particular 
set of parameters the 1 and 2 lines do actually cross. 

We finally mention that, in contrast to the two-dimensional case, an increment of 
an angle qs,[ by II does not, in general, restore the Hamiltonian H,, owing to the non- 
commutativity of the primitive rotations. Furthermore, when tracing the trajectories 
while one angle varies continuously from qo to 'p0+2n the trajectories do not necessarily 
close as one might naively expect. While of course the physical situation is restored, i.e. 
the spectrum and wavefunctions (the latter up to a possible sign factor) are the same, 
a permutation of the positions of the exceptional points may have occurred. Clearly, 
the geometrical structure of the Riemann surfaces is exactly restored as well. 

4. Generalisation 

For a given U the actual values of the angles qs,, depend on the order of the primitive 
rotations. Here we define an order that is suitable for an algorithm which retrieves the 
angles from a given U .  We fix the order by 
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Figure 2. The three levels as a function of i. for fixed q1,2 = q 2 , 3  = 0.08 while q1, j  assumes 
the values 0.03 (a), 0.35 (b), 1.35 (c) and 1.54 (d). The eigenvalues of HI are 0.275, 0.01 and 
4 . 1 4 .  The significance of the descending order is discussed in section 4. 

The set of angles ( P I , & ,  k = 2 , .  . . , N can be obtained by identifying the first column of 
U with the column vector 

s3c4 ' ' ' C N  

Here we denote by c k  and s k  the cos and the sin function, respectively, of ( P I &  The 
matrix B,  has the form 

C ~ " ' C N  -S2 -C2S3 -C2C3S4 ... - c 2  * ' c N - 1 s N  

S 2 C 3 " ' C N  C 2  -S2S3 -S2C3S4 ... - S z C 3  * * C N - ~ S N  
S 3 C 4 " ' C N  0 c3 -s3s4 ... -s3c4 * * . c N - l s N  

S N - I C N  0 ' N - 1  

0 C N  0 . . .  ... 

In the second step the set of angles (P2,k ,  k = 3 , .  . . , N, is determined in a similar way 
from the second column of B;'U.  Note that the latter matrix has only zeros in the 

S N  
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Figure 3. The three trajectories of the exceptional points in the upper 1 plane obtained 
from varying ( ~ 1 . 3  between 0 and n / 2  with the other two angles kept fixed at 0.08. 

first row and column except for the 1-1 element which is unity. The matrix B,  is 
formed accordingly and ( P ~ , ~ ,  k = 4,. . . , N ,  is obtained from the third row of BFIB;' U .  
This procedure stops when ( P ~ - ~ ~  is eventually obtained from B i L Z . .  B;' U ,  yielding 

In the discussion of the previous section the unperturbed lines are well defined by 
construction. For a realistic situation the plotting of such lines is not obvious a priori. 
It appears that the unperturbed lines are well defined only if the matrix U is close to 
a unit matrix, i.e. when all angles are small. As a first generalisation, we discuss the 
situation where the angles obtained from U are not small, but they are assumed to be 
small when calculated from a matrix that is related to U by a suitable permutation and 
possible sign changes of the columns of U .  Note that we always refer to U = U(co),  
which means that the order of the column vectors in U relates to an ascending order 
of the eigenvalues of H,. 

The proper choice of permutations is best explained by considering the case where 
H ,  has very small off-diagonal elements (we recall that we always refer to the basis in 
which Ho is diagonal). This means that the eigenvalues of H ,  are close to its diagonal 
elements. If the diagonal elements of H I  are all in ascending order, like the order 
assumed for the & k ,  the intersections of the unperturbed lines all occur for negative ,I 
values. For positive I values the matrix U(%) is close to a unit matrix, this holds in 
particular for U = U(o0). No permutation is needed. In turn, if the diagonal elements 
of H, are ordered the other way around, all intersections occur for positive I values. 
For I values larger than the farthest right intersection point, the matrix U ( I ) ,  and 
therefore U ,  has a form which is close to 

B N - 1  = RN-Ij .  
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where the signs depend on the actual order of the intersection points. In this case, 
many angles turn out to be rather large. However, the matrix U P o  is close to a unit 
matrix and the angles of U P o  will be small. This can be generalised. We assume an H, 
with small off-diagonal elements but no special order of the diagonal elements. This 
is reflected in the structure of U in that a specific permutation including possible sign 
changes of column vectors of U yields a matrix U P  that is close to a unit matrix. The 
angles obtained from U P  are small, in contrast to those of U .  The ( k , I )  element of 
the matrix P is kl ,  if the kth column of U has to be moved into the lth position of 
U P ;  all other entries of P are zero. The signs of the elements of P are determined by 
the requirement that U P  is close to a unit matrix (this implies detP=l). Surely P can 
be viewed as a rotation as well; however, using the definition of angles as indicated 
above, there would be considerable arbitrariness in some of the angles; we therefore 
refer to P as the permutation matrix. 

To actually determine P for a given U one searches for the largest (in modulus) 
element in the kth column. If it occurs in the lth position then the kth column vector 
of U will be the lth column vector of U P .  Under the assumption made, this same 
matrix element will also be the largest in the lth row of U .  Taking into account the 
sign of the matrix element, all entries of P are thus determined. 

The permutation matrix enables us to draw the appropriate unperturbed lines in a 
well defined way. For H, we use the form 

H, = U P  x P- 'DP x ( U P ) - ' .  (7) 

The association of the &k must now be made with the properly permuted eigenvalues 
of H, appearing in P - ' D P .  Denoting them by cop(,+ the unperturbed lines are given 
by 

Since, under the assumption made, all N ( N  - 1)/2 angles of U P  are small, a reliable 
qualitative pattern of the spectrum of H,+AH, can thus be obtained. One has to replace 
the crossings of the sth with the tth unperturbed line by level repulsions according 
to the magnitudes of the angles ( P ~ , ~  (obtained from U P ) .  Depending on the values 
of the &k and the up(,+ the level repulsions occur at negative and positive 1, values. 
The distribution of the real parts of the exceptional points is essentially given by the 
intersection points of the E:(A). The distribution of their imaginary parts is determined 
by the values of the corresponding (P~,~.  

The diagrams in figure 2 may help to illustrate the point. In section 3 all diagrams 
have been obtained with a descending order of the elements of the diagonal matrix 
P- 'DP occurring in H, = U P  x P- 'DP x ( U P ) - ' .  For the top diagrams the angles 
of U P  are small and hence the unperturbed lines are obtained from associating the 
ascending &k with the descending elements of P- 'DP,  where 

in this particular case. However, for the bottom diagrams the unperturbed lines are 
obtained from associating the &k with the ascending elements of D, since the angles of 
U are now small (note that we have chosen v , , ~  5 x / 2  for UP).  This is due to the 
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fact that the angle cp1,3 v n / 2  effectively interchanges wl  and w3 as long as the other 
angles are small. 

Basically, the procedure described so far can be applied even if we drop the 
assumption about the smallness of the off-diagonal elements of H , .  In the example 
discussed in the previous paragraph this could correspond to an intermediate value of 
(P],~, i.e. (P,,~ v n/4, or any choice for the other angles. The permutation matrix is 
defined in principle by the requirement that the angles of U P  are minimal. Since an 
implementation to determine P in this way seems rather involved, we suggest here a 
heuristic approach which is guided by the procedure indicated above. 

In the general case, more than one column vector of Li will be found which has its 
largest component in the same position. Also, the largest, say Ith, component of the kth 
column may not be the largest component of the Ith row. And for some values of I ,  the 
loth position may not occur. We propose a procedure of ‘second choice’ which works 
efficiently and yields a matrix U P  which is sufficiently close to a unit matrix for our 
purpose. In the first search all columns are allocated their final position, for which the 
largest component is simultaneously the largest component of the corresponding row. 
There remain a number of columns of U P  which are missing (e.g. the fifth position 
was never found to be the largest among all columns of U ) .  This number is equal to 
the number of columns of U which must find another allocation (e.g. the seventeenth 
position was found more than once to be the largest). From the latter set of column 
vectors a reduced square matrix is formed by keeping only the rows with the missing 
numbers. A second search is carried out with the the reduced matrix. The procedure 
is iterated. Tests with randomly generated orthogonal matrices for N = 60 yielded a 
reduced matrix of typical dimension ten to fifteen in the first step. After three or fewer 
iterations U P  was determined. We mention that we expect more favourable situations 
in physical cases where both H ,  and H ,  are assumed to be regular. In other words, 
the transformation U which relates the bases of two regular Hamiltonians is expected 
to be diagonally dominant rather than having random elements. 

In section 2 we found cp(-oo) = cp(00) + l r / 2  and interpreted U ( I )  as a continuous 
rotation by the angle n /2  when I sweeps over the real numbers. The generalisation to 
N dimension implies all the N ( N  - 1)/2 angles cpi,k(I). A simple statement connecting 
the angles at ,? = -00 with those at 1. = CO can no longer be made. The generalisation 
from two to N dimensions is expressed by the relation 

with a similar matrix as in (6) ,  apart from the signs which depend on the specific 
sequence of avoided crossings. It is interesting to visualise the behaviour of the 
rotational matrix U ( I )  qualitatively as a function of I .  It describes the motion of an 
N-bein with an orientation given by the two endpoints U(-m) and U(m), with V(0) 
being the unit matrix in between. Locally, this motion essentially affects two of the N 
axes. Globally it appears rather erratic, owing to the N ( N  - 1)/2 level repulsions which 
give rise to a whirling movement as the individual phases influence each other from 
their analytic connection via the exceptional points. We mention that in particularly 
simple models for many-body systems like the Lipkin model [13] U @ )  can be a simple 
monotonic rotation when I is varied [14]; this corresponds to the fact that, while the 
Lipkin model is of the form H ,  + AHl and does have N ( N  - 1) exceptional points, it 
is characterised by a complete lack of fluctuations [15] in the spectrum for all values 
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of A. Generically, however, this movement is expected to follow an irregular path. 
A quantitative discussion goes beyond the scope of this paper; a possible approach 
could rely on the nonlinear coupled evolution equations [12] which connect E k ( i )  and 
the matrix elements of U(3.). More insight into the behaviour of the state vectors in 
connection with level crossing is expected from our viewpoint. 

5. Summary and discussion 

The major result of this paper lies in a statement about the distribution of the 
exceptional points for the Hamiltonian Ho + ].HI. Their real parts are essentially given 
by the intersection points of the unperturbed lines. These are obtained when the proper 
association between the spectrum of Ho and the spectrum of H, is established using 
the permutation matrix P (equation (7)). The values of the angles obtained from U P  
determine the imaginary parts of the exceptional points. 

It appears obvious that a characterisation of quantum chaos hinges on the dis- 
tribution of the exceptional points. This distribution is primarily governed by the 
intersection points of the unperturbed lines and secondarily by the values of the angles 
associated with U .  Future work will concentrate on first applying our procedure to sit- 
uations which are acknowledged to be chaotic, such as the hydrogen atom in a strong 
magnetic field [16]. In this way further insight will be gained about the statistical 
properties of the distribution of the exceptional points which yields quantum chaos. 
Based on the experience of such studies, the procedure will be applied to other physical 
situations where the classical analogy is not amenable. 

The aim of this paper is to elucidate the principle. We expect the approach to also 
be helpful in the understanding of the high sensitivity found in chaotic systems under 
perturbation. In fact, a perturbation of either H, or H, will in general bring about a 
redistribution of the exceptional points. Such displacement of the exceptional points 
may not necessarily change their statistical distribution. However, at least locally, 
a sensitive behaviour of spectrum and wavefunctions can be expected, owing to the 
motion of the closely lying singularities. In accordance with the discussion of the 
erratic behaviour of the matrix elements we expect a corresponding pattern of 
matrix elements of, say, the momentum operator under variation of A. Likewise, the 
dependence of (mlpln) on m or n for fixed 3. is expected to be erratic. Indications to 
this effect are found in simple models relating to quantum chaos [17]. 

We are aware that quantum mechanical operators are represented by infinite 
matrices and that, strictly speaking, quantum chaos can be expected only in the limit 
N -, a. In order to make progress we limited ourselves to the finite-dimensional case, 
as is the practice in virtually all work related to this subject. 

It is not suggested that one determine the precise positions of the exceptional points 
in a particular case, as this is at least as expensive as a matrix diagonalisation. Future 
work based upon the ideas presented here must concentrate on statistical statements 
about (i) the positions of intersection points of straight lines, (ii) the properties of 
large orthogonal matrices and (iii) the mutual influence of the effect of exceptional 
points upon the spectrum when they lie close together, but in different Riemann sheets. 
Up  to now there are the two traditional approaches to quantum chaos: the statistical 
treatment using GOE Hamiltonians and the semiclassical treatment using the classical 
analogy in small systems. We hope that this paper may provide a bridge between the 
two. 
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